US009477454B2

United States Patent

(12) 10) Patent No.: US 9,477,454 B2
Scheiner et al. 45) Date of Patent: Oct. 25,2016
(54) AUTOMATED SOFTWARE DEPLOYMENT 7,539,980 Bl 5/2009 Bailey et al.
7,552,036 B2 6/2009 Oslake et al.
: . : 7,676,538 B2 3/2010 Potter et al.
(71) Applicant: CA, Inec., Islandia, NY (US) 7783613 B2 §2010 Gupta et al.
. 7,805,496 B2 9/2010 Aiber et al.
(72) Inventors: Uri Scheiner, Haifa (IL); Yaron 7,865,888 B1* 1/2011 Qilrzrs}i ?,l, ,,,,,,,,,,,,,,, GO6N 5/048
Avisror, Kfar Saba (IL) 717/168
7,870,550 B1* 1/2011 Qureshicccoo.... GO6N 5/048
(73) Assignee: CA, Inc., Islandia, NY (US) 717/168
7,873,594 B2 1/2011 Harada et al.
c . . . s 7,966,183 Bl 6/2011 Yao et al.
(*) Notice: Subject. to any dlsclalmer,. the term of this 7.996.814 BL* 82011 Qureshi oo GO6N 5/048
patent is extended or adjusted under 35 17172
U.S.C. 154(b) by 0 days. 8,001,527 B1* 82011 Qureshi ccoooovvoee.. GOG6N 5/048
717/172
(21) Appl. No.: 14/621,114 (Continued)
(22) Filed: Feb. 12, 2015
OTHER PUBLICATIONS
(65) Prior Publication Data Hall, “Agent-based Software Configuration and Deployment”,
US 2016/0239280 Al Aug. 18, 2016 1999, University of Colorado.*
(Continued)
(51) Int. CL
GO6F 9/44 2006.01
GO6F 9/445 E2006 013 Primary Examiner — Anna Deng
(52) US.Cl ’ Assistant Examiner — Junchun Wu
CPC . GOGF 8/60 (201301), GO6F 8/61 (201301), (74) AZZO}’I’!@)/, Agenl, or Firm — Patent Capltal Group
GOG6F 8/65 (2013.01)
(58) Field of Classification Search 7 ABSTRACT
CPC ..o GOGF 8/65; GO6F 8/60; GO6F 8/61 Particular deployment logic is selected that describes a
USPC e 717/172 plurality of steps in a type of software deployment. Release
See application file for complete search history. data is identified that defines a selection of a set of software
artifacts to be deployed in a particular deployment. Further,
56 References Cited environmental data is selected that describes configuration
)

U.S. PATENT DOCUMENTS

of a target system for the particular deployment. First
associations are determined, using data processing appara-
tus, between steps in the plurality of steps and software

5,576,965 A 11/1996 Akasaka et al. f . . o
6.122.627 A /2000 szs}/ ; :l'a artifacts in .the set of software a.rtlfacts. Secgnd associations
6,134,540 A 10/2000 Carey et al. are determined between steps in the plurality of steps and
6,810,368 Bl 10/2004 Pednault configuration information of the target system used in the
g’g;g’?gg g% 3; 3882 JROIll(g et al'al respective steps. The artifacts are automatically deployed on
Pt ackson et al. the target system, using one or more data processing appa-
6,957,199 B1 10/2005 Fisher O
7.376.549 B2 5/2008 Horikawa ratus, based on the first and second associations.
7437,710 B2 10/2008 Bau et al.
7,487,508 B2 2/2009 Fu et al. 18 Claims, 17 Drawing Sheets
DPLOMEN 206
AUTOMATION ENGRE . 210 TR ST
PROCESSR_ 222 260
— =
254] NBNRY 246 T 24
DEPLOYVENT PLAN APPLICATION SERVER
CONRATCR 238 15
DEFLOYMENT
w242 VEWORY 268
EWROWENTAL APRLCATONS 220
— DATABNGNE 215
SO RO 252 FRERS DA SO EETIN T
AAS 240 [y 254] [rRocessR_z62] [ProcEssR 278]
SERVCE
— ouRONaAL | [mory2e4]| | [MevoRr 270] ||lwooeis,pp
DATA BULDR (570 220]
CRACTS o4] — TEST CASES
245
A = | 5
225

200

US 9,477,454 B2

Page 2
(56) References Cited 2012/0066674 Al* 3/2012 Xie ..cocooviniiiiiieinien 717/174
2012/0110567 Al1* 5/2012 Lyons GOG6F 8/61
U.S. PATENT DOCUMENTS 717177
2012/0117560 A1* 5/2012 Vorthmann GOG6F 8/60
8,037,453 B1* 102011 ZawadzKic.ccoccoccrenn 717/123 _ 717177
8,060,864 Bl 11/2011 Michelsen 2013/0232464 Al* 9/2013 Jacquin et al. 717/104
8112262 Bl 2/2012 Michelsen 2013/0332900 AL* 122013 Berg ocoocvrvresoviren. GOGF 8/71
8,225,310 B1* 7/2012 Robertson et al. 717/177 _ 7177121
8,538,740 B2 9/2013 Kumar et al. 2014/0130036 Al* 5/2014 Gurikarccoceernns GO6F 8/61
8,776,048 B2 7/2014 Abuelsaad et al. _ 717/176
8,898,681 Bl 11/2014 Acheff et al. 2014/0223418 Al 8/2014 M!chelsen et al.
9,323,645 B2 4/2016 Michelsen 2015/0205699 Al 7/2015 M!chelsen
20020010781 Al 1/2002 Tuatini 2015/0205700 Al 7/2015 Michelsen
2003/0055670 Al 3/2003 Kryskow et al. 2015/0205701 Al 7/2015 M%chelsen
2003/0217162 Al 11/2003 Fu et al. 2015/0205702 Al 7/2015 M!chelsen
2004/0060035 A1* 3/2004 USEALiS +vrorvrerceserrnnen GOGF 8/71 2015/0205703 Al 7/2015 Michelsen
7177174 2015/0205708 Al 7/2015 Michelsen
2004/0078782 Al 4/2004 Clement et al. 2015/0205712 Al 7/2015 Michelsen
2004/0128259 Al 7/2004 Blakeley et al. 2015/0205713 Al 7/2015 Michelsen
2004/0162778 Al 8/2004 Kramer et al.
2004/0230674 Al 11/2004 Pourheidari et al. OTHER PUBLICATIONS
2005/0027648 Al 2/2005 Knowles et al.
2005/0063335 Al 3/2005 Shenfield et al. « ; ; ;
2005/0283759 AL* 12/2005 Detonnu ot al ... 717170 Arshad et al, “Deployment and dynamic reconfiguration planning
2005/0289231 Al 12/2005 Harada et al. for distributed software systems”, May 17, 2007, Springer Science
2006/0041643 Al* 2/2006 Fanshier GOG6F 8/61 Business Media, LLC.*
709/220 Nesbitt, “Integration and Deployment Techniques in Combination
2006/0075399 Al* 4/2006 Lohcccovvviininine GO6F 8/65 with Development Methodologies”, 2009, Regis University.™
717/174 Wikipedia, “Mock Object,” Sep. 23, 2008, printed May 31, 2009,
2006/0101462 Al* 5/2006 Spears GOGF 8/61 http://en.wikipedia.org/wiki/Mock__object, pp. 1-5.
2006/0224375 AL 102006 Barnet ef al 717177 LISA, 2.0 User’s Guide, Interactive TKO, Feb. 27, 2003, pp. 1-130.
arnett et al. > : :
2006/0235675 AL 10/2006 O_slake ot al. If_Izs3A, 2.0 Developer’s Guide, Interactive TKO, Mar. 13, 2003, pp.
%88;;882%;; ﬁ} éggg; ﬁg);r e‘:t;ﬂ Che_lpter 5—Service Discovery, Bluetooth Application Developer’s
2007/0169003 Al 7/2007 Branda et al. Guide, 2002 (pp. 167-209). _ _ _ _
2007/0261035 Al 11/2007 Duneau Chatterjee, S., “Messaging Patterns in Service-Oriented Architec-
2007/0277158 Al 11/2007 Li et al. ture, Part 1,” msdn.microsoft.com/en-us/library/aa480027.aspx,
2008/0010074 Al 1/2008 Brunswig et al. Apr. 2004, (pp. 1-21).
2008/0120129 Al 5/2008 Seubert et al. Time to live—Wikipedia, the free encyclopedia; 2015; pp. 1-3.
2008/0127093 A1 5/2008 Fernandez-Ivern et al. http://en.wikipedia.org/wikiiTime to_live>, examiner annotated
2009/0064149 A1 3/2009 Singh et al. document.
éggg//g??gggi‘ ﬁi ﬁs‘gggg gﬁmnkzsamy Tt 2111~ US. Appl. No. 14/621,248, filed Feb. 12, 2015 entitled Pre-
erkasova et al. bt : : :
2000/0187534 Al 712009 Broll ot al. gzg;bfvl?:rloff Artifacts in Software Deployments, inventor(s)
%883;85;;‘152 ﬁ} 1?;5883 E(z)i;lsgn:tztl'al. WebPiscussion: “Is TCP protocol stz.lteless ornot?” z.lvajlable online
2009/0298458 Al 12/2009 Bakker et al. at “http://stackoverflow.com/questions/19899236/is-tcp-protocol-
2010/0318974 Al 12/2010 Hrastnik et al. stateless or-not” pp. 1-3 (2013).
2011/0194858 Al 8/2011 Rotenstein et al.
2012/0059868 A1 3/2012 Buckl et al. * cited by examiner

U.S. Patent Oct. 25, 2016 Sheet 1 of 17 US 9,477,454 B2

s}
APPLICATION
SERVER

DEPLOYMENT
AUTOMATION
SYSTEM

DEVELOPMENT

SERVER

e 4,
/4

120

e
/7

e 1,
/T

FIG. 1

US 9,477,454 B2

Sheet 2 of 17

Oct. 25, 2016

U.S. Patent

00¢

Z

—

SYZS10790
INFWAOT430

i

—_—
O¥< SNV

INFWAOT43
p—

<

YFOVNYI

Ve IO

Ye< HOLYIIND

NYTd INIRAOT3C
V"
9EC v
T2 AN

¢ Old
N Gee
a7 732 NIONT V1Y V1¥a 0dIANI
S0 151 NOILYZITYNLYIA BYITH
— 0% NNI 1531 552 EITa TV
99smonll| [672 raoran 57 NN W INFANOHIANG
TINS
| (372 40S5300ud 202 0553004 TS AHOWIN
~— N o ol —
N~ WALSAS 1531 304005 Y1¥Q 3SYITIY ¢9¢ H0SS3004d
GIZ BN YIYQ
OLZ SNOILYOIddY Y INJANOHIANS
WHOMLIN
OZ AJOWIW
902 40553004
gll
YIS NOILLYOTddY
\\'j —
C— 7 oo o _ 01901 LNBNATEH0
Yz AN \@ . —
22 W05S3004d 4 052 ﬁj —
oo TFZ 40SS3004d
=== D Y pNeel . diIs 055300
WALSAS ISYaY1Ya L—— Ol N30T
~ INFNAQTAA

2% H0SS3004d

INIONI NOILYINOLNY

G0c¢ INWAOT3Q

US 9,477,454 B2

Sheet 3 of 17

Oct. 25, 2016

U.S. Patent

gce

[elets)

LOV4I LYY

Ik

0%%

LoV LYY

0%l

00%

eGve
133780
INFWAOT3Q

4ol

EGCC
V1Ya
INFANOMIANG
20Z2
v1va
eovZ | |
Y ENELEY
ININAOTAI [
E0ZC
90T fe
INFWAOTAIA

g 304N0S
o

¥ 308005
40%

US 9,477,454 B2

Sheet 4 of 17

Oct. 25, 2016

U.S. Patent

oGy &L NOILINA0Yd

~

1SNV INFWAO T30

a0dd | | 9LS 0
=

W ===
SEEE

NOILYENIINOD S304N0SH
SINFANCHIANA SINFANOHIANA

TIQ0W SINFANOHIANA

Gly

3L0NOYd

1SFAINVIN 3SYITRY

¥ Old

% &L ONIOY1S I——

| 5

LS3AINVI INFWAO 1A

3LONOYd

UGy ddv

E

[GY dd¥

300N SLOvAILdY
TI00W Y1¥Q ISV

Ocvy

JONVANSSY
ALVNO

] 5

LS3AINVIN INFWAO 1A
T300W HLYd NOILOWOYd

0%y &L

ININAOTA3 | | INFWAOTAD
ddv ddv
N4 7 INFWFHONI

QIn

§$53004d % SMO4 SAALYINIS
JI907 INFNACTA3A SFUNLILHOYY
T3A0W NOILYJINddV
(0] 4

X

0]0;74

US 9,477,454 B2

Sheet 5 of 17

Oct. 25, 2016

U.S. Patent

Y& 'ol4
V1¥Q ONFLNOEA AOTd3d
ST WLH 3L¥ddn 9
W]
WD Y¥ITD
ST714 dA3L AN S
7 1Y WOI 150575 7
WM AOTdA0 204
UM AQTdI0 Y
(ST THLTW LH05075
; 3011 3501
SLIIL 30T [S13MI1L
15777 y TILTN LH0ddNS SIIMIIL IS0 | &
: E%:m%wd -QA] L3DIL 35010
LI WO 3509 ¢ LYOIOL LH0ddnS
1T g -2 M AQdE 47 A0 v
WD YYITD S
ST14 dNEL WTTD T 2| yivo ommou ionga| ST TUH LGN €
e %z%“%m (| WAINOLLWONOO | o9 vaor 3jv00n]| 2
VLYQ LSTINVA 13 YAYT 31YAd
V14T [TONI-ZA] 3HOYD WWAT0 | 3HOWD dWaL 3nona | 1
VIVQ ISVITR LIS T SAIONFANI4IA §S3004d AN | #
S43LS NOLLVZIYILNI N
1S aay + [S431S INFAOTEAC 8/&%5 INIWAOTdAC
STLINOW TLYIINILED | SdILs B INIHAOTA30 1S0d | Sd3LS ININAOTEIA | S NOILYZIVILII | |[WEN@] SLYTIdNEL LNEWAOTEd
N ¢ 20G ¢ 340LS $10908 NOLLYOIddy
[<Nv1d ININAOTI0 LY 205 ¥0S olle; @ ¥401
Y9019 < STHODALYD LY IdNAL
Mmoom

US 9,477,454 B2

Sheet 6 of 17

Oct. 25, 2016

U.S. Patent

dg ‘ol
- ywaeEmoH Al ..
L USTMWHANAN G |
TMFA Vb]
A MIQ<QM<MI_Q ««««««««««««««««««
L mﬁ_“__m_\,E IONRG]
7 IVWOL 10575 77 RO U RS I TR R RO
, ._._ __ ..m§>>9n_m@ ««««««««««««««««««««««««««««««««««««
R wwaotRaw
N &.%\.\ _m N% TWLAGATSFA |- e
S IBRILIS0T o
, ::mmxo:mwodm R wmxo_f:_;_: REEPDEIE S I
___________ ISV gl TduN LS| .Eé: umo._o__ G
o Eo_;x%_wwm%w Coimoumow| o L
e R (E,azo:%&an x, ____________________
R .\%M&\N o m, ««««« N>_W_<>>>O4nmm_ ~“_<>>>O._n_mc __w ««««««««««««««««««
CIHOYO MYATD .V = __
b _.,.,,_._,mﬂ_m,%;ﬁ._i « T %mﬂ_%mw al ”‘_,m% TNH Ea%. 3
< n_mpb/_ms;._n_m_o” R - L]
: > L. w m K..WO;IN\V\N d/\u mmmuow_ﬁ_\mw_—n:.oml_.__l_uw_< |_.|_D<H_Mﬁ_ Q n}l__r:l_\n_-<><ﬁ MI_|<D&D N
][7 5y e
w - e : ot AL NBNAOTAH \j\e\
Y 1Y0 YIRS T | o SISILAL YSITIRORE/ST g0l vy | N # | %z éé_\,_m SHL N~
wn_m;m zo;<N_._<_ :z_ _« §S3008d/ N LI LIHOHY Z:EM_Q_ oy | hzm__>_>o._ &a _._u Exu
N - SST0R/FIDAIHOMY TTVAI0 | Ssa0ud LS WAOE0 |- g™
J SILIONK H§_>E_u wE B Tl I &Hmzo%__gé_z_ EZ@ SV TdNAL ININAOTA]
\ R0LS S1080Y NOLYOTAGY|
A ZEn %_%9% Em%_ NB TR R O 0]
VA0 < SIODELY) UTIAEL
Méom

US 9,477,454 B2

Sheet 7 of 17

Oct. 25, 2016

U.S. Patent

04 9ld

¥1¥Q ONAINOUA A0Td3d
53114 TWIH 31¥0dN 9

TN/
FHOVD YA

114 dA3L IAONI S

£ LYNOL 190075 LA
d¥M A0Td30

4vM AOTdI0 Y

S1YIUL Tt L T L0 15/

LIHIIL 3SOTD
SIPOIL 35079 €

AE/i 4,
IIHIIL 3SOTD

L3MOIL O 35010 °¢

/4l
FHOYD HYT1D

914

[S13M0IL
14 FdILTNA L40ddNS
~QA] 134311 35070

SIMILISO| &

[t LYOWOL L40ddNS
-CA] dvM AQTd30

4¥m A0TdId | ¥

ST14 AL SANINIAT;

[1S31Y1

Y1vQ ONIINOYA AOTd3T-

: Sd31S ININAOTAQ

i (TAINOILYHNDIINGD

i 1871Y] [STVIA YAV 3LVadn | ¢

/ VL0 LS 155 TYNIA-CA] Mbw\/“%._mﬁm__w FHOVO dW3L JIAONR | T

NY -3 K S3dAL ININADTA30 TIN
Sd31S NOILVZITYILINI ~ INFWAOTdIA HOLWHOS:

d31S aqy + ®SdiLS INFWAOTd3a s

4 S3ILIMO0/Md 1Y TdWI L= mn_mCm B8 ; INIWAQT43a 1S0d mn_mCm hzu§>04auo SA3LS NOILYZITYILINI MIN®] SUYTdNIL INTNACTAIA

[< Nv1d INFWAQT30 ILV30)|

FHOLS S100Y NOILYOITddY
@ Va0
Y8010 < SIHOOYILYD 1Y TdAEL

=

2004

US 9,477,454 B2

Sheet 8 of 17

Oct. 25, 2016

U.S. Patent

dsg ol

0cy

a0 |

(ONIHLS) 2ESNeP |

019 Na0kd | (ONILLIS) YWBHOSS |

HR SRR

(QMOMSSd) QHOMSSYP |

TINYD | 3AYS

STIv130 35vaYL¥Q < SHILIAVYYA NOILYIIddY < JNOH
SINTVA INISSIN ATNG MOHS [

LN

ONIDYLS

o | SINFANOHIANT NI3M 138 434410 NvD
SHILINVHYA INFANOHIANT 40 SINTTYA FHL SHILIAYHYd INFANOHIANT ¥NOA LI3 / / 0 S
NOLLYHNOIINGD [a] 340LS SLOH0H] NOILYIddY
NN\@ S INFANOYIAN
dTH | 2 ¥35n3dnS | NOILYHLSININGY S1H0d SLOVAI LMY SASYIT
AN_QQQD

US 9,477,454 B2

Sheet 9 of 17

Oct. 25, 2016

U.S. Patent

4G '9ld
ﬁNmMI

W0 INaNOd ZTaung] 2] INIWAOTA3A LYOWOL MN 1S3L

W01 INENOOTT Q| T 1672 35Y0 404 qTIN8

W01 INaINOY 9T aIng] 11 112Z1043K14

WE0T INNOO 61 ang| 81 26010050 W 1S3L

W0 naodsiangl a 2000 I 1531

W01 ININOD Tz aind| 12| LS3L-T2d 404 NYld LNGNAQTEAa

W01 IIN0YZaIng] 71 §0-0¢ 1S3L

D INIINOD ZZ ang| 2 21716067 1531

W0 INIINOY ZZ aTng| 2 9291 #16067 1531

W01 IN3INO? ZZ Q1Ind £6/1 €057 40

W01 INAING? 02 @Ting 568 £09¢ 1531

WE0T ININO? 81 aTind £09 1531

W0 INZINOJ TZ Q1IN 1720020 1511

OO waom| W owerioz N NN Tz aing] 12| \

ALY dhEL JNIL NOILYZH) NN 39vOvd| aTng
NVd INGACTA30 N +] INAQTIA ¥ 3LV ONY SNVId YHOMLIN ONV TOvHOvd LOvAILY

FHL ATIVIISAHd JAYS NOA ‘SIOVHOVA LIVHILEY ANV SFOVLS INFWACTAIA A MIIATY OL Nv1d ¥ %10

924

¢ INIHS

[ENS) S193r0ud

o SNY1d INBWAOTdA0 | ([T 38015 SIomoa] volLworndy
SLOA0Hd A8 SNYd INFNAO40
dTH |2 JESNdNS | NOILYHLSININGY S140d34 SLOVAILYY _ \mm;_m<m_._m_m _
=

20049

US 9,477,454 B2

Sheet 10 of 17

Oct. 25, 2016

U.S. Patent

4G 'Ol
@75

A0S L 0s 305
TH0d3 ML 09 STHO4H
o NOWINO) L 09 NOWINO?
= B0 R B0
S A IOV 39 aINOHS [NOISHIA TAWN
= =
— 01 WIHXION]
= |[[NDISYIA N
3 WHO
3| 3WH0¥ NV 95 STOVNHOYA LOVAILYY < SLOVAILYY OL 09 ¥0 LIa3 NO YO0 IoWHMIvd HL 11a3 0L
M, . IN3INOD 1Z aTing
N YOV jg:;_m_\,;o% 150d[Sd3LS ININAOTAIA] IOWHIV LOVAILEY ~ [SAILS NOILYZITYILINI

[0 LS]

[SINGWAOTA30 J{ ASVIRANS J| SNvd |

(ININAOTAI0 HOLYHIS) a0 ALYINAL | T2 0N | T INIMAS *L33rOd | FHOLS S1080Y NOILYOITddY
@ (INOQ NOILYZITYILINI) 0%'6 719050 1531
Ot 719040 1531 < SNV'1d INFWACTAAT

d1H | 243SNEdNS |

NOILYHLSININGY

S140d4d

SLOv4ILYY

RENElE

X

4004

US 9,477,454 B2

Sheet 11 of 17

Oct. 25, 2016

U.S. Patent

G 'Ol4
02G
NE
y T L40ddNS SIMIIL 350D G
m A LIMDIL 350D
e, [:LYONOL 140ddnS
2 € -2\ ¥YM A0 VA 0] 7
= [1S3LYT]
2 | Y1Y0 OINOM A0 S314 WIH 31¥0dN ¢
=
= 1A NOLLY4NDINOD
2 I AT V0] STY130 YAYT 3LY0dN Z
= [WNI4-ZA] JHOYD W30 HOYD dNIL INONTY i
o Q23 SIIONIINTA3a $5300ud N #
S
~

4

o jom:%_\,;g% 1504

SiLS INFWAOTAQ] FOVHIVA LOVAILEY # SAILS NOILYZITYILINI

[C0B0[~ sHnn e]

R

L SINFWAOT43Q J{ ASVIANS J{ S\v1d)

(INWAQTdA HOLYYOS) W09 ALY TdARL | T2 “GTINd | T INRIIS 193104 | OLS SLO80M NOILYIINddY
@ (INOA NOILYZITYILINI) OF'6 19090 1531
Ot #19090 L1531 < SNV1d INFWACTdA

dTH | A¥3SMHIdNS |

NOILVELSININGY

SLH04

SLov4ILHY

RENLENEL!

X

LOOG

US 9,477,454 B2

Sheet 12 of 17

Oct. 25, 2016

U.S. Patent

......... ” “ g ”wEon_mm_

‘”“‘”“ ‘_zoﬁzoo

TNV |3 !

ATALYIQINAI INFWACTHAT
FHL N ANV 431 NOILLYZITVILING 31N03XT @

NOENA0Ud

[31N03x3 0

JHL ALY

ONI9Y 1S
V0
0

NOILI353a

¥ NIISSY (Al
INFANOHIANG

NCILdI40S3a

TN]

JAUN

INFWACTIA EE%

US 9,477,454 B2

Sheet 13 of 17

Oct. 25, 2016

U.S. Patent

1S Ol

06 < LIS <t
09 < SL40d3H < M
OvS— 09 < NOWNOY < M
09 < 219078 < VM
0T < TLHXIN! < THLH

SLOVLYY

SINIOV 0L LNAIMLSIA ¢
SYIAY3S NOILNO3XF OL FLNGIILSI T
Tnm/ SYIAYIS NOLLNGIXT ATNO HO[SINTOV OL FUNGMISIA] AOHLIN NOLLNGRILSIA LOVAILHY FSO0HD

N IN3INOQJ 1¢ QINg -39¥MIvd LIV L4V

X MIVATIOH® | INIWAOTdAT 1504 | ININACTdA0" | VMOV LOVLUY.

8eSG—= (1) 340N
HINOHdY
/”r STLYIONd INIWAOTHA
FINA3HOS 440 JNAHIS
Ov6 ¥19090 1531 NY1d INFWAOT3d
INFWAOTI0 HOLYHIS/ Tva019 ALY TN L

YONIA IdAL
YO :INFANOHIMNG

94

(ONIONd) INFNAQT40 1S0d
(ONICAEd) INIWAOTdA = =_
(ONIONEd) SINA9Y OL SLOVAILYY ‘LS

[N @] (NIONB) SUBALES NOILNO3X3 OL SLOVALYY “LSIa@ JOlSSloa oLV

(3nod) NOLLYarTeA ~ (12) T LNIMS 10370
SO0 INIAOTd NOILJIH0830

(WX SV AYS| [3L0I1dna | 4ad 0L 140dx3 LIAINOILNGIMLSIA SLOVAILHY ONIONAd) ¥10Z7060 QWA
1027060 ON3A < SINFNAQTAA

dTH [a¥ISM3dnS | NOILYYLSININTY SLH0dH SLOVAILYY SISVITH

1004

US 9,477,454 B2

Sheet 14 of 17

Oct. 25, 2016

U.S. Patent

Vs :
N\ "G 'Old
<
NN e
o ¥ ou w00 e
_ MNH0 YLYQ QNALNOKO A0TdH0 S374 W LYGdN @
_ N0 | NOLLYNSINOD YAV 3L¥ad SIVL30 YAV 3L¥0dN ©
_ ERY 0 ARINEL Y ST 3L NN © | T
SSRI0 | STONION3GA] SS3008d |NOISA I LS |
. YOVeTI0d0 | INBNAOTAH0 15007 | ININADTCE0% | FoWN0vd LOVAILY
v
. (T) 30N«
9¢5 A0
S314304d INIWAOTA0
TEHS NAT FNEHS
06 19050 1S3L Nyld NAWAOTGAC
(NN INEACTAH] 150d v INIAOTEHOHOLAOS/ V0D ALY IdNBL
(ONINId INIWAOT3 - o S
(NN SINZDY 0L SLOVLLN 1510 D e
TNNY @] (ENIONT) SHIANES NOILMDX3 01 SLOVAILYY “ISId@ BOISSIORE NOLYOdy
g NOLLYGrTvA ~ (12T IS L3310
SSI04 ININAOTAA] NOLLJIH0S30
[X SY 3AYS] [31¥JI1dna | 40d 0L 140dX3 103 (NOILYarTYA DNION3d) 71024060 OWAa
PI077060 OWBQ < SININAQTEH
dTH | &35S | NOILVEISNINGY| Sl | Slovilw | S3SvITY

loog

US 9,477,454 B2

Sheet 15 of 17

Oct. 25, 2016

U.S. Patent

G 9ld

Yags

s
NOKINOD
9079 L 09 907 %_W oz_zo&x
Ha QILOVHLYT 39 TINOHS | NOISHAA N || AL INOW
WMO| [o |
| SYINES | SLOVAILYY | SHLINVHY LNNI NN | SyFLINYYd INTANOMIANG | SHALINvYYd FSYITRY SIJAL YIS
W 00:00:00 ‘03SSYd NIL
oG SITALS NOILY INFWLSNaY NY N30 o] [«
IS _ W00
A MYM A01d30 SS300Md
O WM A0
YM ADTd30 < 11028060 OW3A < INFWAOTAIA
dTH | NOILYMISINIAQY | SLYOdM SLOV4ILYY SISYATIY
ANV_o%

US 9,477,454 B2

Sheet 16 of 17

Oct. 25, 2016

U.S. Patent

14 'Ol

14

BO-JRIIOT\ D

(ONIALS) NOILYOIILNAl

SUILINYAY NOILYOITddY < LWOW 3311 ONILHOd M
sy
S 1 SINIWNHOIANG NFIMLIS ¥4I Ny SHALIAVEYA INFANHOIANT 40 SINTIVA FHL ‘SHILINVAV INIWNCHIANG TIV MIIA —
| SUINGS | SLOVHILYY | SURLINVY ekl HISNNY | SHRLINYYA INFANOUIANG |SHRL MY 35V T3Y STAAL HAAMAS
7 0000100 ‘q3SSYd WL
ors SMTALS NOILY INFWLSAFaY NY N3dO Elmie
as | W00
2\ 9YM AOTd30 SSI00N
QUM A0
YyM AQTd30 < 71027060 OWAA < INIWAOTA
dH | NOLLVIISININGY | S140d3 SLOV4ILHY SISYITR
= 100G

U.S. Patent

Oct. 25, 2016

Sheet 17 of 17

US 9,477,454 B2

©00

7

IDENTIFY SELECTION OF DEPLOYMENT
LOGIC DEFINING STEPS IN A PARTICULAR
TYPE OF DEPLOYMENT

| ~005

IDENTIFY RELEASE DATA DEFINING A
SELECTION OF A SET OF SOFTWARE
ARTIFACTS TO BE DEPLOYED IN A
DEPLOYMENT

| 010

IDENTIFY SELECTION OF ENVIRONMENT
DATA DESCRIBING CONFIGURATION OF A
TARGET SYSTEM FOR THE DEPLOYMENT

|~ 015

DETERMINE ASSOCIATIONS BETWEEN
THE STEPS AND THE ARTIFACTS, AND
BETWEEN THE STEPS ARE COMPONENTS
OF THE TARGET SYSTEM

620

AUTOMATICALLY DEPLOY THE ARTIFACTS
ON THE TARGET SYSTEM

| 625

FIG. ©

US 9,477,454 B2

1
AUTOMATED SOFTWARE DEPLOYMENT

BACKGROUND

The present disclosure relates in general to the field of
computer development, and more specifically, to software
deployment in computing systems.

Modern software systems often include multiple pro-
grams or applications working together to accomplish a task
or deliver a result. An enterprise can maintain several such
systems. Further, development times for new software
releases are shrinking allowing releases to be deployed to
update or supplement a system on an ever-increasing basis.
Some enterprises release, patch, or otherwise modify their
software code dozens of times per week. Further, enterprises
can maintain multiple servers to host their software appli-
cations, such as multiple web servers deployed to host a
particular web application. As updates to software and new
software are released, deployment of the software can
involve coordinating the deployment across multiple
machines in potentially multiple geographical locations.

BRIEF SUMMARY

According to one aspect of the present disclosure, par-
ticular deployment logic can be selected that describes a
plurality of steps in a type of software deployment. Release
data can be identified that defines a selection of a set of
software artifacts to be deployed in a particular deployment.
Further, environmental data can be selected that describes
configuration of a target system for the particular deploy-
ment. First associations can be determined, using data
processing apparatus, between steps in the plurality of steps
and software artifacts in the set of software artifacts. Second
associations can be determined between steps in the plurality
of steps and configuration information of the target system
used in the respective steps. The artifacts can be automati-
cally deployed on the target system, using one or more data
processing apparatus, based on the first and second associa-
tions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified schematic diagram of an example
computing system including an example deployment auto-
mation system in accordance with at least one embodiment;

FIG. 2 is a simplified block diagram of an example
computing system including an example deployment auto-
mation engine in accordance with at least one embodiment;

FIG. 3 is a simplified block diagram illustrating an
example automated deployment in accordance with at least
one embodiment;

FIG. 4 is a simplified block diagram illustrating aspects of
an example deployment cycle in accordance with at least
one embodiment;

FIGS. 5A-5L are screenshots of a graphical user interface
for use in connection with an automated software deploy-
ment in accordance with at least some embodiments;

FIG. 6 is a simplified flowchart illustrating example
techniques in connection with automated deployment of
software on a target system in accordance with at least one
embodiment.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be illustrated and described

20

40

45

50

60

65

2

herein in any of a number of patentable classes or context
including any new and useful process, machine, manufac-
ture, or composition of matter, or any new and useful
improvement thereof. Accordingly, aspects of the present
disclosure may be implemented entirely in hardware,
entirely software (including firmware, resident software,
micro-code, etc.) or combining software and hardware
implementations that may all generally be referred to herein
as a “circuit,” “module,” “component,” or “system.” Fur-
thermore, aspects of the present disclosure may take the
form of a computer program product embodied in one or
more computer readable media having computer readable
program code embodied thereon.

Any combination of one or more computer readable
media may be utilized. The computer readable media may be
a computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, or semiconductor system, appara-
tus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would include the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an appropriate optical fiber with a repeater, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device. Program code
embodied on a computer readable signal medium may be
transmitted using any appropriate medium, including but not
limited to wireless, wireline, optical fiber cable, RF, etc., or
any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, CII,
VB.NET, Python or the like, conventional procedural pro-
gramming languages, such as the “C” programming lan-
guage, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP,
ABAP, dynamic programming languages such as Python,
Ruby and Groovy, or other programming languages. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using

US 9,477,454 B2

3

an Internet Service Provider) or in a cloud computing
environment or offered as a service such as a Software as a
Service (SaaS).

Aspects of the present disclosure are described herein
with reference to flowchart illustrations and/or block dia-
grams of methods, apparatuses (systems) and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable instruction execution apparatus, create a mechanism
for implementing the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that when executed can
direct a computer, other programmable data processing
apparatus, or other devices to function in a particular man-
ner, such that the instructions when stored in the computer
readable medium produce an article of manufacture includ-
ing instructions which when executed, cause a computer to
implement the function/act specified in the flowchart and/or
block diagram block or blocks. The computer program
instructions may also be loaded onto a computer, other
programmable instruction execution apparatus, or other
devices to cause a series of operational steps to be performed
on the computer, other programmable apparatuses or other
devices to produce a computer implemented process such
that the instructions which execute on the computer or other
programmable apparatus provide processes for implement-
ing the functions/acts specified in the flowchart and/or block
diagram block or blocks.

Referring now to FIG. 1, a simplified block diagram is
shown illustrating an example computing environment 100
including a deployment automation system 105, one or more
release data source servers (e.g., 110), one or more appli-
cation server systems (e.g., 115), including web servers,
application servers, database systems, mainframe systems
and other examples. One or more development servers (e.g.,
120), among other example pre- or post-production systems,
can also be provided that can have software artifacts
deployed thereto. Deployment automation system 105 can
make use of data modules that describe the features of a
deployment of a given piece of software, embodied by one
or more software artifacts, from the artifacts’ source(s) onto
one or more particular target systems (e.g., 115, 120). The
modules can be provided by a variety of sources and can
include information defined by users and/or computing
systems. The modules can be processed by the deployment
automation server 105 to generate a deployment plan that
can then be read by the deployment automation server 105
to perform the deployment of the artifacts onto the target
system(s) without the further intervention of a user.

In some implementations, following deployment of a new
software release or update to previously deployed software,
a system 100 can further include an automated testing
system 125 which can be invoked by a user or the deploy-
ment automation system 105 upon completion of the deploy-
ment to ensure that the deployment was successful and the
deployed software is operating as intended. Testing software
125 can include automated testing to simulate inputs of one
or more users or client systems to the deployed software and

10

15

20

25

30

35

40

45

50

55

60

65

4

observation of the responses to the deployed software. In
some cases, the deployed software can respond to the inputs
by generating additional requests or calls to other systems.
Interactions with these other systems can be provided,
through the testing system 125, by generating a virtualiza-
tion of the other systems with which the deployed system is
designed to interact. A virtualized service or system can be
provided, for instance, according to one or more features or
principles as described in U.S. Pat. No. 8,112,262 entitled
“Service Modeling and Virtualization,” which is incorpo-
rated by reference herein. Other testing features can be
provided in connection with the automated testing system
125 allowing a user to schedule or trigger, without further
input, both the deployment and post-deployment validation
of the deployed software.

Deployment of release data artifacts can involve the
distribution of the artifacts from remote sources (e.g., 110)
to their intended destinations (e.g., 115, 120) over one or
more networks 130, including private and/or public net-
works. In some instances, the size of the files embodied in
the artifacts can be quite significant in size and impose high
demands on network (e.g., 130) and processing resources. In
some implementations, artifacts can be strategically pre-
distributed to ease the deployment process. For instance,
pre-distribution can be accomplished according to one or
more of the principles and features described in U.S. patent
application Ser. No. 14/621,248, filed on Feb. 12, 2015 and
entitled “Pre-distribution of Artifacts in Software Deploy-
ments,” incorporated by reference herein. Other data can be
communicated over one or more networks 130 interconnect-
ing devices in system 100. For instance, data modules
utilized by the deployment automation system 105 can be
accessed by or communicated to the deployment automation
system 105 from remote sources over a network. A target
system with a recently deployed software release can com-
municate with testing system 125 in connection with a
post-deployment test of the software release, among other
examples.

Computing environment 100 can further include one or
more user computing devices (e.g., 135, 140, 145) that can
be used to allow users to interface with resources of deploy-
ment automation system 105, target servers 115, 120, testing
system 125, etc. For instance, users can utilize computing
devices 135, 140, 145 to build deployment modules for use
by the deployment automation system 105 in automated
software deployments, and can schedule or launch an auto-
mated deployment through an interface provided in connec-
tion with the deployment automation system, among other
examples.

In general, “servers,” “clients,” “computing devices,”
“network elements,” “database systems,” “user devices,”
and “systems,” etc. (e.g., 105, 110, 115, 120, 125, 135, 140,
145, etc.) in example computing environment 100, can
include electronic computing devices operable to receive,
transmit, process, store, or manage data and information
associated with the computing environment 100. As used in
this document, the term “computer,” “processor,” “processor
device,” or “processing device” is intended to encompass
any suitable processing apparatus. For example, elements
shown as single devices within the computing environment
100 may be implemented using a plurality of computing
devices and processors, such as server pools including
multiple server computers. Further, any, all, or some of the
computing devices may be adapted to execute any operating
system, including Linux, UNIX, Microsoft Windows, Apple
OS, Apple 108, Google Android, Windows Server, etc., as

2 < 2

US 9,477,454 B2

5

well as virtual machines adapted to virtualize execution of a
particular operating system, including customized and pro-
prietary operating systems.

Further, servers, clients, network elements, systems, and
computing devices (e.g., 105, 110, 115, 120, 125, 135, 140,
145, etc.) can each include one or more processors, com-
puter-readable memory, and one or more interfaces, among
other features and hardware. Servers can include any suit-
able software component or module, or computing device(s)
capable of hosting and/or serving software applications and
services, including distributed, enterprise, or cloud-based
software applications, data, and services. For instance, in
some implementations, a deployment automation system
105, source server 110, testing system 125, application
server 115, development server 120, or other sub-system of
computing environment 100 can be at least partially (or
wholly) cloud-implemented, web-based, or distributed to
remotely host, serve, or otherwise manage data, software
services and applications interfacing, coordinating with,
dependent on, or used by other services and devices in
environment 100. In some instances, a server, system, sub-
system, or computing device can be implemented as some
combination of devices that can be hosted on a common
computing system, server, server pool, or cloud computing
environment and share computing resources, including
shared memory, processors, and interfaces.

While FIG. 1 is described as containing or being associ-
ated with a plurality of elements, not all elements illustrated
within computing environment 100 of FIG. 1 may be
utilized in each alternative implementation of the present
disclosure. Additionally, one or more of the elements
described in connection with the examples of FIG. 1 may be
located external to computing environment 100, while in
other instances, certain elements may be included within or
as a portion of one or more of the other described elements,
as well as other elements not described in the illustrated
implementation. Further, certain elements illustrated in FIG.
1 may be combined with other components, as well as used
for alternative or additional purposes in addition to those
purposes described herein.

Software releases continue to occur with increasing regu-
larity as these software associated with these releases evolve
in complexity and technology. Such releases include both
releases of new software systems as well as updates or
patches to existing software systems. Valuable information
technology (IT) personnel and resources are dedicated
within some enterprises to developing and carrying-out
these deployments. Traditionally, human users are employed
throughout the process of the deployment. Further, human
IT resources are not only expensive, but error prone, result-
ing in some deployments which are incorrect and may need
to be re-deployed, further consuming time and personnel
resources. Additionally, some systems may be sensitive to
down periods that may be required in order to allow deploy-
ment of new software releases on the system. The time,
processing, and network capacity needed to perform the
deployment may result in the designation of defined deploy-
ment windows. IT personnel in charge of the deployment
may be directed to ensure that the deployment is completed
within this window. Longer deployment windows can thus
be costly, not only due to the cost in human and computing
resources involved in performing the deployment, but also
the costs of allowing the target system or portions therefor
to remain down during the deployment window. Further,
human error can add complication and expense, for instance,
from accidentally omitting machines from deployment,

10

15

20

25

30

35

40

45

50

55

60

65

6

environment misconfiguration, inconsistency when deploy-
ing the same content across different environments, among
other examples.

At least some of the systems described in the present
disclosure, such as the systems of FIGS. 1 and 2, can include
functionality providing at least some of the above-described
features that, in some cases, at least partially address at least
some of the above-discussed issues, as well as others not
explicitly described. For instance, in the example of FIG. 2,
a simplified block diagram 200 is shown illustrating an
example environment including an example implementation
of a deployment automation engine 205 (e.g., included in a
deployment automation system 105) to perform an auto-
mated deployment of a software release. In one implemen-
tation, the deployment automation engine 205 can include at
least one data processor 232, one or more memory elements
234, and functionality embodied in one or more components
embodied in hardware- and/or software-based logic. For
instance, a deployment automation engine 205 can include
a mapping engine 236, deployment plan generator 238, and
deployment manager 242, among potentially other compo-
nents. Deployment plan data 240 can be generated using the
deployment automation engine (e.g., using deployment plan
generator 238 and mapping engine 236). Deployment plans
240 can be generated to represent the generic deployment of
a particular software package (e.g., upon potentially any
target system) that includes a set of artifacts. Deployment
plans 240 can be generated from a combination of an
instance of deployment logic 220 and an instance of release
data 230. The release data 230 paired with the corresponding
deployment logic 220 can include the artifacts that are to be
deployed using the deployment steps defined by the deploy-
ment logic instance. A deployment plan can be one of a
library of deployment plans. Each deployment plan can be
reusable in that it can be used to deploy the corresponding
release on multiple different environments. Accordingly,
deployment objects 245 can be generated (e.g., using
deployment manager 242) for use in guiding automated
deployment, performed by the deployment automation
engine 205, on a particular environment. A deployment
object 245 can be generated, in one example implementa-
tion, from a combination of an instance of a deployment plan
(e.g., 240) and environment data (e.g., 225) corresponding to
the environment where on the release is to be deployed (as
defined in the deployment plan). In other instances, deploy-
ment objects can be generated directly from a combination
of deployment logic 220, environment data 225, and release
data 230 corresponding to the particular deployment (e.g.,
rather than through a combination of a deployment plan and
an instance of environment data), among other potential
implementations.

As shown in the simplified block diagram 300 of FIG. 3,
three data module types can be defined: 1) deployment logic
(e.g., 220a); 2) release data (e.g., 230a) (including artifacts
to be deployed); and 3) environment data (e.g., 2254a). In this
example, an instance of a deployment plan data module
(e.g., 240a) can be generated from a set comprising one
module from each of the deployment logic and release data
types. The deployment plan 240a can define a mapping of
deployment logic to release data to define which deployment
logic steps are performed using which artifacts defined in the
release data. A specific deployment instance, or object, 245a
can be generated from a combination of a deployment plan
240q and an environment data module 2254 corresponding
to the target of the particular deployment. The deployment
object 2454 can be generated by mapping deployment logic
to target sub-systems and components of the environment

US 9,477,454 B2

7

defined in the environment data module. The deployment
object 245a can include machine readable data that can be
accessed and read by a deployment automation system 105
to perform all of the steps to automate the deployment of the
artifacts on the target environment.

In some cases, a single source can provide each of the
three modules (e.g., 220a, 2254, 2304) for use in generating
a deployment plan (e.g., 240a) and deployment object (e.g.,
245aq). In other cases, modules in the respective set can be
received from potentially multiple different sources (e.g.,
305, 310, 315). Indeed, multiple different parties can be
involved in activities related to each of the three module
types and can be responsible for generating each module.
For instance, three different persons may be involved, in a
given deployment, to define the deployment logic, provide
the release data, and define the environment data. These data
modules can be defined and provided for use in deploy-
ments. Indeed, the data modules (e.g., 220a, 2254, 230a) can
be re-usable and can be utilized in multiple different deploy-
ments. For instance, at least one of the data modules in a set
to define a deployment may be a previously generated
module defined, for instance, in connection with an earlier
(and potentially otherwise unrelated) deployment.

A user can define a deployment by selecting one of each
of the deployment logic (e.g., 220a), release data (e.g.,
230q), and environment data (e.g., 2254). A deployment
automation system can accept these inputs, obtain the
respective selected modules, and consolidate these pieces
together in a deployment plan (e.g., 240q) and a deployment
object (e.g., 245a). A user can select a deployment plan from
a library of generated deployment plans and select a par-
ticular environment for the deployment to trigger the gen-
eration of a corresponding deployment object (e.g., 2454).
The deployment automation system (e.g., using a deploy-
ment manager 242) can access the selected deployment
object and run the deployment automatically and indepen-
dent of a user from the information included in the deploy-
ment object. Deployment can include identifying and
accessing one or more target systems (e.g., 320, 325) hosted
on one or more computing devices, authenticating to the
target systems, and downloading artifacts (e.g., 330, 335)
identified in release data 230a and hosted on a source (e.g.,
110) to the target systems 320, 325 over one or more
networks (e.g., 130).

Deployment logic (e.g., 220a) can include the workflow,
or steps, needed to perform a particular type of deployment
and can be based on the type of system targeted by the
deployment. The steps can also vary depending upon the
type of deployment, such as a full deployment, immediate
patch, among other examples. Deployment logic, once
defined, can be reused to perform the same type of deploy-
ment, using the same defined set of steps, in multiple
subsequent deployments, including deployments of various
different release artifacts on various different target systems.
Further, the deployment logic can be built from pre-defined
tasks, or deployment steps, that can be re-usably selected
from a library of deployment tasks to build a single deploy-
ment logic module for a given type of deployment.

Release data (e.g., 230q) includes the artifacts (or files) to
be deployed in a specific version or release. Release data can
additionally identify the source or host of the artifacts, such
that the artifacts can be retrieved by the deployment auto-
mation engine for deployment on target systems. Other
information can also be included in the release data, such as
a deployment manifest, which can include sensitive data
corresponding to the release (e.g., content that should be
deployed, bugs that are to be addressed by the release,

10

15

20

25

30

35

40

45

50

55

60

65

8

change requests), among other examples. Attaching release
data, deployment manifests, and other information to the
same genericized deployment logic package can thereby
allow re-use of the deployment logic (e.g., without modifi-
cation).

Environment data (e.g., 2254) can define a particular
target environment or subsystem within a system. Distinct
environment data modules can be defined and maintained
for each potential target within the system. Each environ-
ment data module can include information such as the
target’s configuration, passwords, addresses, and machines,
as well as dependencies of the target on other machines in
the system. The environment data can include any informa-
tion that might be used to access, authenticate to, and deploy
the release data on the corresponding target systems.

When a specific release is planned, a user can define the
combination of deployment logic, release data, and envi-
ronment data to be used. The system, without further inter-
vention by the user, can then collect the selected modules,
and automatically identify, for each step of the deployment
logic, what release data is to be applied and how the step is
to be executed at the target. The deployment logic can also
define the order in which the steps are performed together
with the dependencies of the steps on other steps. With these
associations made, the system can define a deployment plan
and proceed with the deployment steps as defined by the
deployment logic. The deployment plan data (e.g., 240a) can
also be saved and reused, for instance, as a template for
another, similar deployment.

Returning to FIG. 2, a mapping engine 236 can be
provided to identify how to map various steps in a particular
deployment logic module (e.g., 240) with target system
attributes (e.g., target address, authentication information)
defined in a selected environmental data module (e.g., 225)
as well as the artifact(s) to be used within that particular step
(as defined in release data 230). Deployment automation
engine 205 can generate sets of deployment plan data 240,
any one of which can be selected, paired with environment
data 225, and used (e.g., by deployment manager 242) to
perform the steps to complete a corresponding software
deployment on a corresponding target.

A deployment logic engine 210 can be provided that
includes at least one data processor 244, one or more
memory elements 246, and functionality embodied in one or
more components embodied in hardware- and/or software-
based logic. For instance, a deployment logic engine 210 can
include a deployment logic builder 248 that can be used to
define and generate deployment logic modules 220. Each
deployment logic module can define a set of generic steps to
be performed in a deployment and can further defined
dependencies and ordering of the steps. Step data 250 can be
associated with each step. Indeed, a library of step data 250
can be provided, at least some of which are pre-defined. The
steps defined in the library of step data 250 can be reused
across potentially multiple deployment logic modules 220.
A use can define new or modify existing deployment logic
modules by selecting steps from the library of steps to
include in a deployment type corresponding to the deploy-
ment logic module. The ordering and dependencies of the
selected steps can also be defined and described in a result-
ing deployment logic module generated based on the user
inputs. Each deployment logic module 220, once defined
and generated, can be made available for use and re-use in
potential multiple different deployment plans corresponding
to multiple different software deployments.

An environmental data engine 215 can be provided that
includes at least one data processor 252, one or more

US 9,477,454 B2

9

memory elements 254, and functionality embodied in one or
more components embodied in hardware- and/or software-
based logic. For instance, an environmental data engine 215
can include environmental data builder logic 356 for use in
defining and generating environmental data modules 225. A
user can potentially interface with the environmental data
engine 215 to identify the target and define configuration
parameters specific to that target. A single environmental
data module can, in some instances, describe all of the
machines and configuration information that will be
accessed in a given deployment. Accordingly, an environ-
mental data module’s target can include multiple machines
or sub-systems that will be involved in a single deployment.
In some implementations, environmental data builder 225
can include logic for scanning and discovering potential
target systems within a system as well as configuration
parameters of the target systems. In such implementations,
at least some of the environmental data modules can be
populated, at least in part, with information collected by a
computing system through automated scanning.

One or more release data sources (e.g., 110) can be
provided. A release data source can be a server including at
least one processor device 262 and one or more memory
elements 264 to include logic for receiving, maintaining, and
eventually sending various software artifacts in release
deployments within the system. In some cases, a single
release data source can be maintained as a repository for all
releases that are to be performed for a system. In other cases,
multiple release data sources can be provided. Copies of
developed release artifacts 230 can be deposited in the
release data sources (e.g., 110) of a system.

As noted above, environmental data can describe various
targets on which artifacts may be deployed. For instance,
environmental data may identify and describe configuration
parameters of an application server (e.g., 115), database
system (e.g., 260), or other system. An application server
115 can include, for instance, one or more processors 266,
one or more memory elements 268, and one or more
software applications, including applets, plug-ins, operating
systems, and other software programs that might be updated,
supplemented, or added using an automated deployment.
Some software releases can involve updating not only the
executable software, but supporting data structures and
resources, such as a database. Accordingly, a database
system 260 can, in some examples, be targeted together with
application server 115 within a deployment, the database
system including one or more processors 272, one or more
memory elements 268, and a database management system
276 managing one or more databases and their composite
tables. Depending on the type of the system targeted in a
deployment, the type and content of configuration data (as
identified in environmental data modules 225) may vary
substantially in accordance with the nature of and mecha-
nisms for accessing the respective system.

After a deployment is completed and the desired artifacts
loaded onto a target system, it may be desirable to validate
the deployment, test its functionality, or perform other
post-deployment activities. Tools can be provided in a
system to perform such activities, including tools which can
automate testing. For instance, a test system 125 can be
provided that includes one or more processors 278, one or
more memory elements 279, and one or more components
implemented in hardware and/or software to perform or
support tests of a deployed software package. For instance,
a test system 125 can include a test engine 280 that can
initiate sample transactions with the deployed software to
test how the deployed software responds to the inputs. The

20

25

30

35

40

45

10

inputs can be expected to result in particular outputs if the
software is deployed correctly. The test engine 280 can test
the deployed software according to test cases 284 that define
how a test engine 280 is to simulate the inputs of a user or
client system to the deployed software and observe and
validate responses of the deployed software to these inputs.

Deployed software may consume resources of and be
dependent other backend systems, including services and
third-party systems. Rather than testing compatibility of
deployed systems with the live versions of these backend
systems, virtualized versions of the backend systems can be
generated based on service models 286. Service models and
virtualized services can be implemented in accordance with
one or more principles described in U.S. Pat. No. 8,112,262,
among other examples. In some cases, service virtualization
can be instantiated in connection with tests of deployed
software as orchestrated by the test engine 280. Further, the
test cases and service models to be employed in post-
deployment assessment of a release can be pre-designated
such that post-deployment testing can proceed automatically
and/or immediately following the automated deployment of
the release, among other examples.

It should be appreciated that the architecture and imple-
mentation shown and described in connection with the
example of FIG. 2 is provided for illustrative purposes only.
Indeed, alternative implementations of an automated
deployment system can be provided that do not depart from
the scope of this Specification. For instance, one or more of
the deployment logic engine 210, environmental data engine
215, and release data source 110, can be integrated with,
included in, or hosted on one or more of the same devices
as the deployment automation engine. Additionally, a central
deployment automation system can be provided, in some
implementations, as a service capable of providing auto-
mated deployments to a variety of different systems owned
by multiple different entities and/or deploying release arti-
facts developed by a variety of different vendors and
sources. A centralized system can leverage deployment logic
modules generated in other deployments for or on behalf of
multiple different entities, among other potential advan-
tages. In other instances, a deployment automation system
can be a private or enterprise-specific implementation han-
dling deployments of software developed by and/or target-
ing systems of a single entity, among other examples.

Turning to FIG. 4, a simplified block diagram 400 is
shown illustrating additional details of a lifecycle of auto-
mated deployments. As noted herein, data modules utilized
by a deployment automation system can be reusable.
Deployment plans can also be re-used as developed from a
particular deployment logic module and a resource data
module (including the artifacts to be deployed). For
instance, as the lifecycle of a software system evolves,
multiple deployments may take place, for instance, as the
software system migrates from a development stage, to a
quality assurance stage, to a staging stage, and production
stage (e.g., in accordance with Promotion Path Model 420.
Indeed, as the software system evolves, new artifacts may be
developed and the software system can be deployed on
multiple different target machines allocated for each stage,
among other examples. The deployment, in one example,
can be logically organized into an Application Model 405
(including reusable deployment logic and information
describing topology of the application), Release Data Model
410 (including artifacts, manifests, and other deployment
specific information), and Environments Model 415 (includ-
ing environment data describing environment resources,
configuration information, etc.). The Promotion Path Model,

US 9,477,454 B2

11

in this example illustration, can describe the sequence and
order of environments in which the content is to be deployed
(e.g., in accordance with a production plan).

FIGS. 5A-5L are screenshots 500a-/ illustrating example
user interfaces for building deployment logic, generating a
deployment plan file from the selected deployment logic and
release data, and selecting environment data corresponding
to a target on which to launch the deployment. For instance,
the screenshot 500a of FIG. 5A shows an example user
interface for viewing details of, editing, and building
deployment logic (or “template”). A pane 502 can include a
listing of the steps that have been selected for inclusion in
the defined flow of the deployment logic. A menu bar 504
can be provided to toggle between views of deployment
phases defined in the deployment logic template. For
instance, one or more steps can be associated with initial-
ization, one or more additional steps associated with deploy-
ment, and one or more steps associated with post-deploy-
ment. Initialization steps can include, for instance, parsing
the content (e.g., files) of a release and deciding which logic
to use in the deployment, provisioning machines for use in
performing the deployments, obtaining configuration data
from external resources, and securing approval for the
deployment. Post deployment steps can include steps to
invoke and use a testing system to run one or more test cases
and/or use one or more virtual services to test the deployed
software upon completion of the deployment steps, among
other examples. An additional view 506 can show listings of
steps included within each of the phases.

Continuing with the example of FIG. 5A, the pane 502
can include a listing of the steps defined for the particular
deployment as well as dependencies defined for each step.
For instance, Step 2 can be defined to be dependent on Step
1, such that Step 2 is to begin following completion of Step
1, among other examples. Indeed, in some cases, a step may
not be dependent on any other step in the deployment logic
template. Alternatively, in other cases, a step can dependent
on the completion of multiple steps or multiple steps can be
dependent upon the same particular step, and so on.

In the example of FIG. 5A, a template can be selected for
editing within pane 510. New deployment logic templates
can be created as well, for instance, through the selection of
the “New” button in pane 510. Deployment steps can be
added or removed to a new or existing deployment logic
template. For instance, selecting button 508 can allow a user
to define an additional step to add to a deployment logic
template. FIG. 5B shows a window 512 that can be pre-
sented allowing a user to search a library of pre-defined steps
that might be re-usably selected and added to the deploy-
ment logic template. Controls can also be provided to allow
a user to launch a step definition user interface allowing the
user to define or provide an XML file or other data embody-
ing the step logic. The user can select a pre-existing or newly
created step for use within the deployment logic template
being modified.

A user can also define deployment logic by deleting (or
replacing) steps and defining ordering of the steps by editing
step dependencies, among other features. For instance, as
shown in the example of FIG. 5C, by hovering over a
particular one of the selected steps controls (e.g., 518) can
be presented that, when selected, allow the user to perform
actions on the selected step, such as to delete the step or edit
dependencies of the step (e.g., using control 518), among
other examples. When the user is satisfied with the deploy-
ment logic template steps and flow, such that the flow
describes the actions involved in performing a given deploy-
ment, the user can save the deployment logic template. In

10

15

20

25

30

35

40

45

50

55

60

65

12

this example, the deployment logic can describe the flow for
performing a scratch, or full, deployment of new software on
a system. For instance, the steps can include removing
temporary files by clearing a cache, updating Java configu-
ration, creating directories, copying files, modifying files,
restarting machines (e.g., after deployment), among other
examples. For other types of deployments, other steps and
flows can be defined within a corresponding deployment
logic template.

Turning to the screenshot 5004 of FIG. 5D, an example
user interface 520 is shown to generate environmental data
modules for a variety of different environments. For
instance, a user can select a particular environment or target
from a menu provided in pane 522. In this example, targets
can be grouped by a function, application, or other common
characteristic, such as geography, machine type, etc. Names
of the targets can be presented. In this example, targets can
be grouped by project, or application, and the targets can
correspond to targets in each of a variety of stages within
that project. For instance, a Production target, Quality Assur-
ance (QA) target, Staging target, and User Acceptance
Testing (UAT) target environments can be presented. Selec-
tion of one of the targets in pane 522, can cause a configu-
ration view to be presented in pane 522. Within this pane
522, a user can define configuration information for the
target, including application parameters and (as shown in
FIG. 5D) database details of the target. Depending upon the
target, differing parameters may be defined, to say nothing
of unique parameter values. For instance, as shown in the
example of FIG. 5D, a Production target can include a
database and database parameters can be defined as con-
figuration information for the Production target, including
database password, database schema, database user ID, and
so on. Upon selecting and specifying values for each of the
parameters to be included in the Production target’s param-
eters, the changes can be saved to define a new or update an
existing environmental data module.

In FIG. 5E, a user interface is shown presenting a view
524 of a portion of a library of defined deployment plans.
Additional windows (e.g., 526) can be provided to assist a
user in filtering, viewing, and selecting a given deployment
plan. Each deployment plan can be constructed from a
pairing of a deployment logic template with a set of artifacts
(e.g., a release data module) and can be specific to that
pairing. Each deployment plan can be potentially reused to
deploy the same set of artifacts on multiple different targets
in multiple different deployments. Selection of any one of
the presented deployment plans (e.g., in the listing of view
524) can cause additional user interface views and tools to
be presented allowing a user to assess and potentially
modify the deployment plan.

Turning to the example of FIG. 5F, a screenshot 5001 is
shown of a view of a selected deployment plan (e.g.,
selected from the listing of view 524 in FIG. 5E). For
instance, a user can view various aspects of the deployment
plan by navigating through menu 526. In the example of
FIG. 5F, a view of the Artifact Package of the deployment
plan can be viewed. The artifact package can list all of the
artifacts to be deployed in the deployment, as provided and
defined in a release data module. For instance, in this
example, a release entitled “build 21” can include deploy-
ment of an HTML artifact named index.html and multiple
Web application Archive (WAR) artifacts (e.g., “blogic,”
“common”, “reports,” and “site””) can be provided for
deployment. Additional information can be provided for the
various artifacts, such as their versions, information con-
cerning their source and extraction, etc. Release data mod-

US 9,477,454 B2

13

ules can also be defined by users. In some cases, release data
can be provided as an XML file that can be parsed to identify
the artifacts to be deployed together with any artifact-
specific attributes and other relevant information.

Continuing with the previous example, the artifacts
shown in view 528 can correspond to release data that has
been paired with a deployment logic template to form the
corresponding deployment plan. Turning to FIG. 5G, a user
can select to view the deployment steps as provided by the
deployment logic template (e.g., as presented in view 530).
Through the views provided in the examples of FIGS. 5F
and 5G, a user can confirm that the deployment plan is
correct and even make last minute changes to either the
deployment logic or artifact sets.

Upon confirming that the deployment plan has been
accurately generated, the user can select a Deploy button
531 to cause the deployment plan to be scheduled for use in
a deployment. In this example, selection of Deploy 531 can
cause a window 532 to presented, as show in FIG. 5H,
allowing the user to select the target environment on which
the deployment plan is to be executed (i.e., to automatically
deploy the artifacts on the target environment). Selection of
one of the available targets in window 532 can cause the
deployment plan to be associated with an environmental
data module corresponding to the selected target. The asso-
ciation of a deployment plan with a selected target can define
a “Deployment” object. The deployment object can be saved
and held until the deployment is scheduled or is to be
manually launched. For instance, in the example of FIG. 5H,
a user can select a particular one of the available environ-
ments (e.g., “UAT™) to cause the deployment plan (e.g.,
illustrated in FIGS. 5F-5G) to be paired with the environ-
mental data corresponding to the selected environment.

As discussed above, a deployment plan can be generated
from deployment logic templates and release data to map
particular steps to particular artifacts’ to be accessed and/or
deployed in the step. Further, pairing the deployment plan to
given environmental data can cause a deployment automa-
tion system to map further steps (as well as artifact deploy-
ments) to corresponding machines identified in the environ-
mental data and the machine’s respective configuration
information. For instance, a deployment step can involve
accessing a target’s database and inserting data into one or
more tables of the database. The deployment object can map,
within a deployment object, configuration information iden-
tifying an address of the database and the database’s access
parameters (e.g., password, username, etc.) to the step
described in the deployment logic template.

Information included in a deployment object can also be
made available for inspection to a user through one or more
graphical user interfaces. For instance, as shown in the
screenshot 500; of FIG. 51, views 534, 536, 538, 540 are
presented in a graphical user interface summarizing a
deployment object created from a pairing of the example
deployment plan of FIGS. 5F and 5G with an environmental
data module corresponding to a Quality Assurance (QA)
environment. View 534 can summarize general characteris-
tics of the deployment, including a project and application
addressed by the release, as well as the target system (e.g.,
“QA”), the deployment logic template employed (e.g.,
“Global/Scratch Deployment™) and the deployment plan
object corresponding to the deployment (e.g., “Test 050614
9:40”). Timing of the deployment can also be specified
(automatically or by a user), for instance, to schedule the
launch of the deployment within a particular deployment
window. Window 536 can present a view of the deployment
progress. As the stages of the deployment (e.g., validation,

20

40

45

50

55

14

artifact distribution to execution servers, distribution of
artifacts to deployment agents (or caches), deployment, and
post-deployment) progress, GUI elements can be presented
to indicate the progress and controls may be presented to
allow a user to launch (or pause or cancel) the automated
handling of the next stage of the deployment, among other
examples. A view 538 can also be provided allowing a user
to view additional deployment properties (e.g., included in
the metadata of the release). Additionally, a pane 540 can be
provided to allow users to view various aspects of the
deployment. For instance, as shown in the example of FIG.
51, a view of the “Artifact Package” is selected in the menu
541 and the listing of the artifacts to be deployed are
presented along with selectable deployment options (e.g.,
the artifact distribution method) that can be applied by the
deployment automation engine during the automated
deployment.

Turning to FIG. 5], a screenshot 500/ is presented show-
ing presentation of an additional pane 542 (e.g., in connec-
tion with a user’s selection of “Deployment” from menu
541) related to the deployment object. In this example, view
542 can show a listing and progress of each step in the
selected deployment logic template. Elements listed in the
views (e.g., 534, 536, 538, 540, 542, etc.) can be selectable
such that additional views are presented in the GUI to
provide additional details concerning the selected element.
For instance, a user can select a particular one of the listed
steps (e.g., Deploy WAR) to cause a view 544 specific to that
step to be presented, as shown in FIG. 5K. In the example
of FIG. 5K, a new window 544 is presented that provides
information concerning the selected deployment step (e.g.,
“Deploy WAR”), such as its progress, when the step began
being performed by deployment automation logic, as well as
a menu 546 providing the user with options to explore more
detailed information concerning the selected deployment
step and its progress within the automated deployment. For
instance, as shown in FIG. 5K, a user has selected “Arti-
facts” from the menu 546 to cause a listing to be presented
in window 544 that shows which artifacts (e.g., WAR files
“blogic,” “common,” and “site””) were mapped to the step by
the deployment automation system and are going to be used
(e.g., deployed) in this particular step. The deployment
automation system can perform such a mapping, for
instance, by identifying, from the step data corresponding to
a given step (e.g., Deploy WAR”), that the step is to use data
of a particular type, format, naming convention, source, etc.
and can parse the paired-to release data module to identify
those artifacts (and artifact information) within the release
data module that satisfy the conditions of the step data. The
deployment automation engine can formalize the mapping
of steps to artifacts and, during the deployment, can identify
(without intervention of a user) that performance of a given
step will use the one or more corresponding artifacts.
Further, the graphical elements corresponding to these arti-
facts (as displayed in view 544) can also be selectable to
cause the presentation of additional views with further
details relevant to the deployment of that particular artifact.

FIG. 5L is a screenshot 500/ of another view 548 that can
result from a user selecting menu item “Environment Param-
eters” from menu 546. The view 548 can replace the view
544 of FIG. 5K and can present information concerning the
target environment(s) and related configuration parameters
the deployment automation engine has determined are rel-
evant to performance of the selected step (e.g., Deploy
WAR). For instance, in the particular example of FIG. 5L,
deployment automation engine determined (e.g., from cor-
responding step data) that the Deploy WAR step would

US 9,477,454 B2

15

involve accessing a Tomcat™ (or other) web server of the
target environment. Accordingly, deployment automation
engine, when presented with the environmental data module
corresponding to the target environment, can parse the
environmental data module to identify the environment’s
web server and the configuration parameters related thereto.
In this example, the deployment automation engine mapped
the target configuration information specifying the location
(or address) of the target’s Tomcat™ server to the Deploy
WAR step. Further, when deployment is launched, the
deployment automation system can read the deployment
object and automatically perform actions (using the envi-
ronment configuration information and according to the step
data) to perform the step without further human involvement
or intervention.

Turning to FIG. 6, a simplified flowchart 600 is shown
illustrating example techniques involved in an automated
deployment of software on a target system. For instance, a
selection of deployment logic, such as a deployment logic
template or module, can be identified 605. Selection of
release data defining a set of artifacts to be deployed in a
particular deployment can also be identified 610. In some
cases, the deployment logic and release data can be paired
to create a deployment plan that can define a generic
deployment of the artifacts that can be reused in deploying
the artifacts on a number of different target systems. A
selection of environment data can be identified 615 corre-
sponding to a particular target system. The environment data
can provide configuration information identifying attributes
of the components of the target system (e.g., distinct devices
and software systems within the target system) that can be
used to access (and in some cases authenticate to) each of the
components of the target system. Associations can be deter-
mined 620 between the steps and the artifacts such that use
of each artifact is mapped to a particular step. Further
associations can be determined 620 between the steps (and,
potentially also, the mapped-to artifacts) and particular
component of the target system, such as the components
whereon the artifacts are to be deployed using the step. The
deployment logic, release data, environment data, and asso-
ciations there between can be used to automatically deploy
the artifacts onto the target system autonomous of further
user intervention or interaction. Further, deployment data
can be generated to define the deployment and a deployment
automation engine can consume the deployment data to
perform the automated deployment of the artifacts on the
target system, among other example implementations.

The flowcharts and block diagrams in the Figures illus-
trate the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various aspects of the present
disclosure. In this regard, each block in the flowchart or
block diagrams may represent a module, segment, or portion
of code, which comprises one or more executable instruc-
tions for implementing the specified logical function(s). It
should also be noted that, in some alternative implementa-
tions, the functions noted in the block may occur out of the
order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially con-
currently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

10

15

20

25

30

35

40

45

50

55

65

16

The terminology used herein is for the purpose of describ-
ing particular aspects only and is not intended to be limiting
of the disclosure. As used herein, the singular forms “a”,
“an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the pres-
ence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equiva-
lents of any means or step plus function elements in the
claims below are intended to include any disclosed structure,
material, or act for performing the function in combination
with other claimed elements as specifically claimed. The
description of the present disclosure has been presented for
purposes of illustration and description, but is not intended
to be exhaustive or limited to the disclosure in the form
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the disclosure. The aspects of the
disclosure herein were chosen and described in order to best
explain the principles of the disclosure and the practical
application, and to enable others of ordinary skill in the art
to understand the disclosure with various modifications as
are suited to the particular use contemplated.
The invention claimed is:
1. A method comprising:
identifying a selection of deployment logic describing a
plurality of steps in a type of software deployment;

identifying release data defining a selection of a set of
software artifacts to be deployed in a particular deploy-
ment;

identifying a selection of environment data describing a

set of existing configuration attributes of a target sys-
tem upon which the set of software artifacts are to be
deployed in the particular deployment;

associating, using data processing apparatus, steps in the

plurality of steps with software artifacts in the set of
software artifacts, wherein a particular one of the
plurality of steps is associated with a particular one of
the set of artifacts based on a determination that the
particular step uses a particular type of artifact and
determining that the particular artifact is of the particu-
lar type;

associating steps in the plurality of steps with respective

configuration attributes in the set of existing configu-
ration attributes of the target system;

generating deployment data describing first associations

between the plurality of steps and respective software
artifacts and second associations between the plurality
of steps and respective configuration attributes,
wherein the deployment data defines configuration
attributes of the target system to be used in completion
of associated steps in the plurality of steps based on the
second associations; and

using the deployment data to cause the artifacts to be

automatically deployed on the target system based on
the first and second associations.

2. The method of claim 1, further comprising generating
wherein the deployment data is generated from the selected
deployment logic, the selected environment data, the release
data, and the first and second associations.

3. The method of claim 1, wherein the selected deploy-
ment logic, the selected environment data, and the release
data each originate from a different source.

US 9,477,454 B2

17

4. The method of claim 1, further comprising generating
a deployment plan module from the selected deployment
logic and the release data, wherein the deployment plan
module identifies each of the plurality of steps and maps
each artifact in the set of artifacts to a respective one of the
plurality of steps.

5. The method of claim 4, wherein the set of artifacts
comprises a plurality of artifacts and a particular one of the
plurality of artifacts is mapped to a first one of the plurality
of steps and is to be used in the first step, and at least two
other artifacts in the plurality of artifacts are mapped to a
second one of the plurality of steps and are to be used in the
second step.

6. The method of claim 5, wherein generating the deploy-
ment data comprises associating the selected environment
data to the deployment plan module and mapping the
plurality of steps and artifacts to be used in the step to
respective components in the target system.

7. The method of claim 6, wherein the components
comprise a plurality of computing devices and each of the
plurality of computing devices is mapped to a respective
step in the plurality of steps.

8. The method of claim 6, wherein the deployment plan
module comprises a reusable deployment plan module to be
associated with any one of a plurality of environment data
modules, each plan environment data module corresponds to
a respective computing system, and associating the deploy-
ment plan module to environment data causes corresponding
deployment data to be generated to define deployment of the
artifacts on the respective computing system using the
plurality of steps.

9. The method of claim 1, wherein the deployment logic
further describes dependencies between the plurality of
steps.

10. The method of claim 1, wherein the environment data
identifies a set of components of the target system and the
configuration attributes comprise a location of each compo-
nent and information for accessing each component.

11. The method of claim 10, wherein determining the
second associations comprises:

identifying that a particular one of the plurality of steps is

to deploy a particular one of the set of artifacts on a
particular type of system component;

identifying that a particular one of the set of components

is of the particular type; and

automatically determining that the particular step is to be

used to deploy the particular artifact on the particular
component.

12. The method of claim 1, further comprising perform-
ing, using data processing apparatus, the deployment of the
artifacts on the target system.

13. The method of claim 1, wherein the particular deploy-
ment comprises a deployment of new software.

14. The method of claim 1, wherein the particular deploy-
ment comprises deployment of an update to existing soft-
ware.

15. The method of claim 1, further comprising generating
the deployment logic based on selection of the plurality of
steps from a library of defined steps.

16. The method of claim 15, wherein each step in the
library is associated with respective step logic, and gener-
ating the deployment logic comprises:

including the step logic of each of the selected plurality of

steps; and

receiving a definition of dependencies between the plu-

rality of steps.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

17. A computer program product comprising a non-
transitory computer readable storage medium comprising
computer readable program code embodied therewith, the
computer readable program code comprising:

computer readable program code configured to identify a

selection of deployment logic describing a plurality of
steps in a type of software deployment;

computer readable program code configured to identify

release data defining a selection of a set of software
artifacts to be deployed in a particular deployment;

computer readable program code configured to identify a

selection of environment data describing a set of exist-
ing configuration attributes of a target system upon
which the set of software artifacts are to be deployed in
the particular deployment;

computer readable program code configured to associate

steps in the plurality of steps with software artifacts in
the set of software artifacts, wherein a particular one of
the plurality of steps is associated with a particular one
of the set of artifacts based on a determination that the
particular step uses a particular type of artifact and
determining that the particular artifact is of the particu-
lar type;

computer readable program code configured to associate

steps in the plurality of steps with respective configu-
ration attributes in the set of existing configuration
attributes of the target system;

computer readable program code configured to generate

deployment data describing first associations between
the plurality of steps and respective software artifacts
and second associations between the plurality of steps
and respective configuration attributes, wherein the
deployment data defines configuration attributes of the
target system to be used in completion of associated
steps in the plurality of steps based on the second
associations; and

computer readable program code configured to use the

deployment data to cause the artifacts to be automati-
cally deployed on the target system based on the first
and second associations.

18. A system comprising:

a processor;

a memory element;

a deployment automation engine to:

identify a selection of deployment logic describing a

plurality of steps in a type of software deployment;
identify a selection of a set of software artifacts to be
deployed in a particular deployment;

identify a selection of environment data describing a set

of existing configuration attributes of a target system
upon which the set of software artifacts are to be
deployed in the particular deployment;

associate steps in the plurality of steps with software

artifacts in the set of software artifacts, wherein a
particular one of the plurality of steps is associated with
a particular one of the set of artifacts based on a
determination that the particular step uses a particular
type of artifact and determining that the particular
artifact is of the particular type;

associate steps in the plurality of steps with respective

configuration attributes in the set of existing configu-
ration attributes of the target system;

generate deployment data describing first associations

between the plurality of steps and respective software
artifacts and second associations between the plurality
of steps and respective configuration attributes,
wherein the deployment data defines configuration

US 9,477,454 B2
19 20

attributes of the target system to be used in completion
of associated steps in the plurality of steps based on the
second associations; and

use the deployment data to automatically deploy the
artifacts on the target system based on the first and 5
second associations.

#* #* #* #* #*

